115 research outputs found

    Industrial bees: the impact of apicultural intensification on local disease 1 prevalence

    Get PDF
    This is the author accepted manuscript. The final version is available from Wiley via the DOI in this record.1) It is generally thought that the intensification of farming will result in higher disease prevalences, although there is little specific modelling testing this idea. Focussing on honeybees, we build multi18 colony models to inform how ‘apicultural intensification’ is predicted to impact honeybee pathogen epidemiology at the apiary scale. 2) We used both agent-based and analytical models to show that three linked aspects of apicultural intensification (increased population sizes, changes in population network structure, and increased between-colony transmission) are unlikely to greatly increase disease prevalence in apiaries. Principally this is because even low-intensity apiculture exhibits high disease prevalence. 3) The greatest impacts of apicultural intensification are found for diseases with relatively low R0 (basic reproduction number), however, such diseases cause little overall disease prevalence and therefore the impacts of intensification are minor. Furthermore, the smallest impacts of intensification are for diseases with high R0 values, which we argue are typical of important honeybee diseases. 4) Policy Implications: Our findings contradict the idea that apicultural intensification by crowding honeybee colonies in large, dense apiaries leads to notably higher disease prevalences for established honeybee pathogens. More broadly, our work demonstrates the need for informative models of all agricultural systems and management practices in order to understand the implications of management changes on diseasesBiotechnology & Biological Sciences Research Council (BBSRC

    Immune-mediated competition in rodent malaria is most likely caused by induced changes in innate immune clearance of merozoites

    Get PDF
    Malarial infections are often genetically diverse, leading to competitive interactions between parasites. A quantitative understanding of the competition between strains is essential to understand a wide range of issues, including the evolution of virulence and drug resistance. In this study, we use dynamical-model based Bayesian inference to investigate the cause of competitive suppression of an avirulent clone of Plasmodium chabaudi (AS) by a virulent clone (AJ) in immuno-deficient and competent mice. We test whether competitive suppression is caused by clone-specific differences in one or more of the following processes: adaptive immune clearance of merozoites and parasitised red blood cells (RBCs), background loss of merozoites and parasitised RBCs, RBC age preference, RBC infection rate, burst size, and within-RBC interference. These processes were parameterised in dynamical mathematical models and fitted to experimental data. We found that just one parameter μ, the ratio of background loss rate of merozoites to invasion rate of mature RBCs, needed to be clone-specific to predict the data. Interestingly, μ was found to be the same for both clones in single-clone infections, but different between the clones in mixed infections. The size of this difference was largest in immuno-competent mice and smallest in immuno-deficient mice. This explains why competitive suppression was alleviated in immuno-deficient mice. We found that competitive suppression acts early in infection, even before the day of peak parasitaemia. These results lead us to argue that the innate immune response clearing merozoites is the most likely, but not necessarily the only, mediator of competitive interactions between virulent and avirulent clones. Moreover, in mixed infections we predict there to be an interaction between the clones and the innate immune response which induces changes in the strength of its clearance of merozoites. What this interaction is unknown, but future refinement of the model, challenged with other datasets, may lead to its discovery

    Plasmodium knowlesi Genome Sequences from Clinical Isolates Reveal Extensive Genomic Dimorphism.

    Get PDF
    Plasmodium knowlesi is a newly described zoonosis that causes malaria in the human population that can be severe and fatal. The study of P. knowlesi parasites from human clinical isolates is relatively new and, in order to obtain maximum information from patient sample collections, we explored the possibility of generating P. knowlesi genome sequences from archived clinical isolates. Our patient sample collection consisted of frozen whole blood samples that contained excessive human DNA contamination and, in that form, were not suitable for parasite genome sequencing. We developed a method to reduce the amount of human DNA in the thawed blood samples in preparation for high throughput parasite genome sequencing using Illumina HiSeq and MiSeq sequencing platforms. Seven of fifteen samples processed had sufficiently pure P. knowlesi DNA for whole genome sequencing. The reads were mapped to the P. knowlesi H strain reference genome and an average mapping of 90% was obtained. Genes with low coverage were removed leaving 4623 genes for subsequent analyses. Previously we identified a DNA sequence dimorphism on a small fragment of the P. knowlesi normocyte binding protein xa gene on chromosome 14. We used the genome data to assemble full-length Pknbpxa sequences and discovered that the dimorphism extended along the gene. An in-house algorithm was developed to detect SNP sites co-associating with the dimorphism. More than half of the P. knowlesi genome was dimorphic, involving genes on all chromosomes and suggesting that two distinct types of P. knowlesi infect the human population in Sarawak, Malaysian Borneo. We use P. knowlesi clinical samples to demonstrate that Plasmodium DNA from archived patient samples can produce high quality genome data. We show that analyses, of even small numbers of difficult clinical malaria isolates, can generate comprehensive genomic information that will improve our understanding of malaria parasite diversity and pathobiology

    Within-Host Speciation of Malaria Parasites

    Get PDF
    BACKGROUND: Sympatric speciation—the divergence of populations into new species in absence of geographic barriers to hybridization—is the most debated mode of diversification of life forms. Parasitic organisms are prominent models for sympatric speciation, because they may colonise new hosts within the same geographic area and diverge through host specialization. However, it has been argued that this mode of parasite divergence is not strict sympatric speciation, because host shifts likely cause the sudden effective isolation of parasites, particularly if these are transmitted by vectors and therefore cannot select their hosts. Strict sympatric speciation would involve parasite lineages diverging within a single host species, without any population subdivision. METHODOLOGY/PRINCIPAL FINDINGS: Here we report a case of extraordinary divergence of sympatric, ecologically distinct, and reproductively isolated malaria parasites within a single avian host species, which apparently occurred without historical or extant subdivision of parasite or host populations. CONCLUSIONS/SIGNIFICANCE: This discovery of within-host speciation changes our current view on the diversification potential of malaria parasites, because neither geographic isolation of host populations nor colonization of new host species are any longer necessary conditions to the formation of new parasite species

    Characterization of Within-Host Plasmodium falciparum Diversity Using Next-Generation Sequence Data

    Get PDF
    Our understanding of the composition of multi-clonal malarial infections and the epidemiological factors which shape their diversity remain poorly understood. Traditionally within-host diversity has been defined in terms of the multiplicity of infection (MOI) derived by PCR-based genotyping. Massively parallel, single molecule sequencing technologies now enable individual read counts to be derived on genome-wide datasets facilitating the development of new statistical approaches to describe within-host diversity. In this class of measures the FWS metric characterizes within-host diversity and its relationship to population level diversity. Utilizing P. falciparum field isolates from patients in West Africa we here explore the relationship between the traditional MOI and FWS approaches. FWS statistics were derived from read count data at 86,158 SNPs in 64 samples sequenced on the Illumina GA platform. MOI estimates were derived by PCR at the msp-1 and -2 loci. Significant correlations were observed between the two measures, particularly with the msp-1 locus (P = 5.92×10−5). The FWS metric should be more robust than the PCR-based approach owing to reduced sensitivity to potential locus-specific artifacts. Furthermore the FWS metric captures information on a range of parameters which influence out-crossing risk including the number of clones (MOI), their relative proportions and genetic divergence. This approach should provide novel insights into the factors which correlate with, and shape within-host diversity

    The Summary Index of Malaria Surveillance (SIMS): a stable index of malaria within India

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Malaria in India has been difficult to measure. Mortality and morbidity are not comprehensively reported, impeding efforts to track changes in disease burden. However, a set of blood measures has been collected regularly by the National Malaria Control Program in most districts since 1958.</p> <p>Methods</p> <p>Here, we use principal components analysis to combine these measures into a single index, the Summary Index of Malaria Surveillance (SIMS), and then test its temporal and geographic stability using subsets of the data.</p> <p>Results</p> <p>The SIMS correlates positively with all its individual components and with external measures of mortality and morbidity. It is highly consistent and stable over time (1995-2005) and regions of India. It includes measures of both <it>vivax </it>and <it>falciparum </it>malaria, with <it>vivax </it>dominant at lower transmission levels and <it>falciparum </it>dominant at higher transmission levels, perhaps due to ecological specialization of the species.</p> <p>Conclusions</p> <p>This measure should provide a useful tool for researchers looking to summarize geographic or temporal trends in malaria in India, and can be readily applied by administrators with no mathematical or scientific background. We include a spreadsheet that allows simple calculation of the index for researchers and local administrators. Similar principles are likely applicable worldwide, though further validation is needed before using the SIMS outside India.</p

    Within-host competition does not select for virulence in malaria parasites; studies with Plasmodium yoelii

    Get PDF
    In endemic areas with high transmission intensities, malaria infections are very often composed of multiple genetically distinct strains of malaria parasites. It has been hypothesised that this leads to intra-host competition, in which parasite strains compete for resources such as space and nutrients. This competition may have repercussions for the host, the parasite, and the vector in terms of disease severity, vector fitness, and parasite transmission potential and fitness. It has also been argued that within-host competition could lead to selection for more virulent parasites. Here we use the rodent malaria parasite Plasmodium yoelii to assess the consequences of mixed strain infections on disease severity and parasite fitness. Three isogenic strains with dramatically different growth rates (and hence virulence) were maintained in mice in single infections or in mixed strain infections with a genetically distinct strain. We compared the virulence (defined as harm to the mammalian host) of mixed strain infections with that of single infections, and assessed whether competition impacted on parasite fitness, assessed by transmission potential. We found that mixed infections were associated with a higher degree of disease severity and a prolonged infection time. In the mixed infections, the strain with the slower growth rate was often responsible for the competitive exclusion of the faster growing strain, presumably through host immune-mediated mechanisms. Importantly, and in contrast to previous work conducted with Plasmodium chabaudi, we found no correlation between parasite virulence and transmission potential to mosquitoes, suggesting that within-host competition would not drive the evolution of parasite virulence in P. yoelii

    Plant-mediated effects on mosquito capacity to transmit human malaria

    Get PDF
    The ecological context in which mosquitoes and malaria parasites interact has received little attention, compared to the genetic and molecular aspects of malaria transmission. Plant nectar and fruits are important for the nutritional ecology of malaria vectors, but how the natural diversity of plant-derived sugar sources affects mosquito competence for malaria parasites is unclear. To test this, we infected Anopheles coluzzi, an important African malaria vector, with sympatric field isolates of Plasmodium falciparum, using direct membrane feeding assays. Through a series of experiments, we then examined the effects of sugar meals from Thevetia neriifolia and Barleria lupilina cuttings that included flowers, and fruit from Lannea microcarpa and Mangifera indica on parasite and mosquito traits that are key for determining the intensity of malaria transmission. We found that the source of plant sugar meal differentially affected infection prevalence and intensity, the development duration of the parasites, as well as the survival and fecundity of the vector. These effects are likely the result of complex interactions between toxic secondary metabolites and the nutritional quality of the plant sugar source, as well as of host resource availability and parasite growth. Using an epidemiological model, we show that plant sugar source can be a significant driver of malaria transmission dynamics, with some plant species exhibiting either transmission-reducing or -enhancing activities

    The Coevolution of Virulence: Tolerance in Perspective

    Get PDF
    Coevolutionary interactions, such as those between host and parasite, predator and prey, or plant and pollinator, evolve subject to the genes of both interactors. It is clear, for example, that the evolution of pollination strategies can only be understood with knowledge of both the pollinator and the pollinated. Studies of the evolution of virulence, the reduction in host fitness due to infection, have nonetheless tended to focus on parasite evolution. Host-centric approaches have also been proposed—for example, under the rubric of “tolerance”, the ability of hosts to minimize virulence without necessarily minimizing parasite density. Within the tolerance framework, however, there is room for more comprehensive measures of host fitness traits, and for fuller consideration of the consequences of coevolution. For example, the evolution of tolerance can result in changed selection on parasite populations, which should provoke parasite evolution despite the fact that tolerance is not directly antagonistic to parasite fitness. As a result, consideration of the potential for parasite counter-adaptation to host tolerance—whether evolved or medially manipulated—is essential to the emergence of a cohesive theory of biotic partnerships and robust disease control strategies
    corecore